
The Quarkbase Cosmology Explanation of
Superconductivity and Thermal
Hyperconductivity in Graphene

Carlos Omeñaca Prado

November 2025

Contents

1 Theoretical Framework and Derivation 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Physical Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Minimal Model — Variables and Couplings . . . . . . . . . . . . . . . . . . 3
1.4 Reduction to a Collective Phase Model (Ginzburg–Landau Form) . . . . . 4
1.5 Energy Scale and Qualitative Estimate of Tc . . . . . . . . . . . . . . . . . 5
1.6 Mechanism of Minimal Dissipation . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Distinction from Conventional BCS Superconductivity . . . . . . . . . . . 6
1.8 Experimental Predictions (Testable) . . . . . . . . . . . . . . . . . . . . . . 7
1.9 Experimental Design Overview . . . . . . . . . . . . . . . . . . . . . . . . 8
1.10 Commentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Numerical Estimation of Tc 9
2.1 Relation Between σmin and neff . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Numerical Constants and Useful Values . . . . . . . . . . . . . . . . . . . . 10
2.3 Reasonable Parameter Ranges for the Model . . . . . . . . . . . . . . . . . 10
2.4 Calculation of neff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Estimation of Tc Using the BKT Formula . . . . . . . . . . . . . . . . . . . 11
2.6 Interpretation and Comparison with Experiments . . . . . . . . . . . . . . 12
2.7 Sensitivities and Refinement of the Prediction . . . . . . . . . . . . . . . . 13

1



3 Demonstrative Physical–Theoretical Synthesis and Predictions 13
3.1 Common Origin: Coherence of the Ψ Field in a Hexagonal Lattice . . . . . 13
3.2 Electric Current Without Cooper Pairs . . . . . . . . . . . . . . . . . . . . 14
3.3 Exceptional Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Connection Between Superconductivity and Thermal Conductivity . . . . . 15
3.5 Verifiable Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Conclusion 16

References 16

Abstract

This work proposes a unified mechanism for superconductivity and thermal
hyperconductivity in graphene within the framework of Quarkbase Cosmology
(CQB) — a theoretical model in which space is a frictionless etheric plasma de-
scribed by a scalar pressure field Ψ(x, t). In this picture, the hexagonal lattice of
graphene acts as a two-dimensional resonant cavity for Ψ, whose phase coherence
produces nondissipative electric currents without requiring Cooper pairing.

An effective Ginzburg–Landau formulation is derived, identifying the phase stiff-
ness K and the collective electron–Ψ coupling as the origin of supercurrents. A
Berezinskii–Kosterlitz–Thouless analysis yields critical temperatures Tc between 1
and 10 K for realistic parameters, consistent with experimental data for pristine
and twisted-bilayer graphene.

The same etheric coherence responsible for superconductivity also accounts for
graphene’s exceptional thermal conductivity (> 5000 W/m·K) through pressure-
energy transport by the Ψ field at velocity cΨ ∼ 106 m/s. This establishes graphene
as a macroscopic probe of the frictionless ether and unifies its electrical and thermal
properties as two measurable manifestations of phase and amplitude coherence in
the underlying pressure field.

1. Theoretical Framework and Derivation

1.1. Introduction

A mechanism of superconductivity in graphene is proposed that does not rely on Cooper
pairing. Phase coherence and dissipationless transport emerge as a collective property of
the Quarkbase pressure field Ψ(x, t), the frictionless etheric plasma described in Quark-
base Cosmology (CQB). Within the hexagonal lattice of graphene, the geometry of mi-
croscopic cavities and the nonlinear response of the medium generate coherent modes of

2



Ψ that couple to the conduction electrons, producing a nondissipative current term. An
effective Ψ–electron Hamiltonian is constructed, a Ginzburg–Landau–type equation for
the collective phase of the field is derived, and the condition for superflow is obtained.
The model predicts measurable dependencies on strain, pressure, dielectric environment,
and low-frequency resonant excitations, allowing experimental distinction from the con-
ventional BCS mechanism.

1.2. Physical Idea

In the Quarkbase framework, the vacuum is a frictionless elastic medium (µ = 0),
a continuous plasma–ether described by a scalar pressure potential Ψ(x, t) and a vector
potential A(x, t) related to E and B. The scalar field obeys a relativistic wave equation
of Klein–Gordon type with a finite screening length λ.

In a two-dimensional material with regular cavities such as graphene, the atomic lattice
forms periodic resonators for the pressure field, promoting localized and collective modes
of Ψ.

When these modes reach long-range phase coherence, the phase of Ψ acts as an order
parameter analogous to that of a superconductor. Its coupling to charge carriers produces
nondissipative current flow without any bound electron–electron pairs.

Hence, the “superfluid” state arises from a collective coherent mode of the etheric
substrate Ψ, effectively transporting charge through its coupling to electrons.

1.3. Minimal Model — Variables and Couplings

Consistent with the reinterpreted Maxwell equations in CQB:

E = −∇Ψ − ∂tA, B = ∇ × A, (1)

and for the scalar field in Lorenz-type gauge:

1
c2 ∂

2
t Ψ − ∇2Ψ + λ−2Ψ = ρeff

ε0
, (2)

where λ is the longitudinal screening length of the pressure mode.

Electrons in graphene are described by a two-dimensional Dirac fermion field ψ(r), and
Ψ(r, t) represents the macroscopic longitudinal mode of the pressure field. The effective
bidimensional Hamiltonian (in reduced SI units) is:

H = Hel[ψ] +HΨ[Ψ] +Hint[ψ,Ψ], (3)
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Electronic part (Dirac model):

Hel =
∫
d2r ψ† [vF σ ·(−iℏ∇ − eAext) − µ]ψ, (4)

where vF is the Fermi velocity and µ the chemical potential.

Pressure field (longitudinal nonlinear mode):

HΨ =
∫
d2r

[
Π2

2MΨ
+ MΨc

2
Ψ

2 (∇Ψ)2 + MΨω
2
0

2 Ψ2 + α

4 Ψ4
]
, (5)

where Π is the conjugate momentum, cΨ the propagation velocity (typically c/
√

3), ω0 ≃
cΨ/λ, and α > 0 controls the intrinsic nonlinearity derived from the spherical geometry
of the quarkbase units (Axiom 6).

Electron–Ψ coupling:

Hint =
∫
d2r

[
g1Ψψ†ψ + g2(∇Ψ)·j

]
, (6)

where j = ψ†vψ is the electronic current density, and g1, g2 are real coupling constants.
The first term modulates the local charge density, while the second converts pressure
gradients into driving forces, consistent with E = −∇Ψ.

Key hypothesis: The combination of nonlinear self-interaction (αΨ4) and hexagonal
geometry enables the self-organization of Ψ into a coherent phase state,

Ψ(r, t) = Φ(r) eiθ(t), (7)

representing the collective oscillation of the frictionless etheric pressure field across mesoscale
regions.

1.4. Reduction to a Collective Phase Model (Ginzburg–Landau
Form)

Integrating out the fast electronic degrees of freedom in an adiabatic approximation—
assuming that the pressure field Ψ varies slowly in time compared with the electronic
dynamics—yields an effective free energy functional for a complex collective order param-
eter Ψ = Φeiθ. The phase θ represents the macroscopic coherence of the etheric mode,
while Φ gives its local amplitude.

F [Ψ] =
∫
d2r

[
a|Ψ|2 + b

2 |Ψ|4 +K|∇Ψ|2 − γAel ·i(Ψ∗∇Ψ − Ψ∇Ψ∗)
]
. (8)
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where:

• a = a0(T − T0) controls the onset of coherence; T0 is the spontaneous organization
temperature of the Ψ mode in the absence of coupling.

• b > 0 represents the effective nonlinearity related to the intrinsic α-term of the
Quarkbase field.

• K is the phase stiffness, physically connected with the global conservation of pressure
volume in the etheric plasma:

∫
ρp d

3x+Nvq = ρ(0)
p VU , (9)

which stabilizes coherent oscillations.

• The term with γ describes the minimal coupling between the collective phase and
the emergent electronic vector potential Ael, itself induced by local charge density
variations or external fields.

When Ψ acquires a nonzero expectation value ⟨Ψ⟩ ̸= 0 with a slowly varying phase θ(r),
the nondissipative current density associated with the coherent mode is

jQ = κ|Ψ|2(∇θ − Aeff), κ ∝ 2γK. (10)

This expression mirrors the supercurrent in standard superconductivity,

js ∝ |ψ|2(∇φ− (2e/ℏ)A),

but here both magnitude and coupling emerge from the etheric pressure field itself, without
Cooper pairs.

Condition for dissipationless transport: If the phase dynamics θ is stabilized by high
stiffness K and the intrinsic dissipation of Ψ is negligible—consistent with the frictionless
nature of the ether (µ = 0, Fourth Axiom)—then jQ can flow with vanishing resistance.
The result is a superfluid-like conduction purely from the coherent organization of Ψ.

1.5. Energy Scale and Qualitative Estimate of Tc

The free energy density associated with the ordered state can be written as

∆F ≃ a|Ψ|2 + b

2 |Ψ|4. (11)

The transition occurs when a = 0. If the characteristic energy of the longitudinal
pressure mode is ℏωΨ ∼ MΨc

2
Ψ, and the electron–Ψ coupling promotes condensation at
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temperatures kBT ≲ Ecoh, then

kBTc ∼ Ecoh ∼ K

ξ2 ∼ K

ℓ2 , (12)

where ℓ is the coherence length of the Ψ mode, determined by the hexagonal geometry
and the screening length λ of the medium.

In clean graphene, ℓ can range from several nanometers to micrometers; consequently,
Tc may reach experimentally accessible values. A quantitative evaluation follows in Sec-
tion 2.

1.6. Mechanism of Minimal Dissipation

Why is there no resistance?
The current jQ originates from collective phase variations of the pressure field Ψ.

Dissipation would require breaking phase coherence—through creation of high-energy
excitations or soliton nucleation. If the energy barrier for such events exceeds kBT , the
current remains persistent.

Impurities and phonons in graphene locally distort Ψ, yet the collective, long-wavelength
character of the mode allows the phase to reorganize continuously without significant scat-
tering of carriers. The current flows through dynamically reconfigurable channels of Ψ,
analogous to a superfluid circumventing defects.

The intrinsic nonlinearity (αΨ4) stabilizes solitonic or self-focused configurations that
can carry current without loss. These stable localized modes act as pressure vortices of
the etheric field, naturally protected by the frictionless condition (µ = 0, Fourth Axiom).

Thus, dissipation is absent because the supercurrent is not transported by electrons
themselves but by the coherent topology of the etheric pressure field. Resistance would
appear only when coherence is disrupted on scales smaller than the coherence length ℓ.

1.7. Distinction from Conventional BCS Superconductivity

In the standard Bardeen–Cooper–Schrieffer (BCS) theory, resistance-free transport arises
from the formation of bound Cooper pairs, producing a gap in the electronic excitation
spectrum and a condensate of paired bosons.

In contrast, the Quarkbase mechanism differs fundamentally:

• No electron pairing: Current arises from collective coupling to Ψ rather than
from bound electron pairs.
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• Bosonic spectral gap: If a gap exists, it belongs to the bosonic mode Ψ, not to
the electronic spectrum. The key physical requirement is the phase stiffness of Ψ,
not electronic pairing energy.

• Observable superconducting signatures emerge geometrically: Experimen-
tal phenomena such as zero resistance, Meissner-like expulsion of magnetic fields,
and Josephson-like phase coupling can all result from the behavior of Ψ. In partic-
ular, a Meissner-type effect arises naturally if the coupling produces an energy term
of the form

Fphase ∝ |∇θ − A|2, (13)

which is minimized by expelling the effective magnetic field Beff from the coherent
region.

Hence, superconductivity and the Meissner phenomenon can appear without Cooper
pairs, as emergent macroscopic consequences of the coherent pressure field of the fric-
tionless ether.

1.8. Experimental Predictions (Testable)

Resonant excitation: Applying acoustic waves or low-frequency electromagnetic fields
that resonate with the natural frequency of the pressure mode (ωΨ) should enhance
superconductivity—either by increasing Tc or reducing residual resistance. This reso-
nance condition provides a direct experimental fingerprint of the etheric mode.

Dependence on strain and curvature: Introducing curvature or torsion in graphene
(via bending or strain engineering) modifies the cavity geometry that defines the coherence
length ℓ and the phase stiffness K. Consequently, Tc and the magnitude of the residual
resistance should vary predictably with applied strain.

Dielectric-environment effect: Changing the substrate or surrounding dielectric (e.g.,
BN versus SiO2) alters the screening length λ of the pressure field Ψ, thereby affecting
the robustness of the coherent state. A higher dielectric constant should reduce λ and
suppress phase coherence, while a lower permittivity medium should enhance it.

Josephson-like coupling between graphene sheets: Two regions of graphene pos-
sessing distinct etheric phases θ1 and θ2 should exhibit a tunneling supercurrent that
depends on the phase difference:

I ≈ Ic sin(∆θ), (14)
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measurable in interferometric ring configurations. This effect would demonstrate phase
coupling in the absence of Cooper pairs.

Residual quantum noise and excitation spectrum: The excitation spectrum is
expected to display a bosonic collective mode ωΨ(k), identifiable through inelastic Raman
scattering, EELS, or THz spectroscopy. As the Ψ field condenses, quantum noise should
decrease due to suppression of random pressure fluctuations.

1.9. Experimental Design Overview

DC and AC transport in pristine and twisted-bilayer graphene: Measure R(T )
under controlled acoustic or electromagnetic excitations and compare with unexcited ref-
erence samples.

Spectroscopic probing: Use Raman, EELS, and THz spectroscopy to detect softening
of the Ψ mode as the system approaches the transition temperature.

Phase interferometry: Fabricate graphene interferometers with weak links to test for
phase-dependent currents, indicative of coherent Ψ coupling across regions.

Substrate dependence: Compare graphene samples on BN, h-BN encapsulated, and
SiO2 substrates to evaluate how environmental screening affects the stability of the co-
herent etheric mode.

Reference document: Omeñaca Prado, C. (2025). Reinterpretation of Maxwell: The
Next Electromagnetic Revolution. Figshare, Preprint.

1.10. Commentary

This theoretical framework demonstrates, in a self-consistent way, how phase coherence of
the Quarkbase pressure field Ψ, induced by the hexagonal geometry of graphene and by
the intrinsic nonlinearities of the frictionless etheric medium, can produce dissipationless
transport without Cooper pairing.

An effective Ginzburg–Landau–type formulation for the collective phase has been de-
rived, the nature of the superflow current explained, and a set of clear experimental
predictions enumerated. The model unifies superconductivity and phase coherence as
emergent manifestations of the macroscopic organization of the pressure field in a hexag-
onal lattice.
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2. Numerical Estimation of Tc
For a two-dimensional coherent flow (a rigid-phase state), the relevant transition is ex-
pected to be of the Berezinskii–Kosterlitz–Thouless (BKT) type. The BKT transition
temperature is related to the phase stiffness—or equivalently, to the two-dimensional su-
perfluid density ns—by the order-of-magnitude relation:

kBTc ≈ π

2
ℏ2ns

m∗ , (15)

where:

• ns is the effective surface density of carriers participating in the coherent current
(m−2). In this model, ns ≈ neff, the density induced by the Quarkbase pressure
channels Ψ.

• m∗ is the effective mass associated with collective transport (kg). It represents the
inertial parameter of the Ψ channel coupled to the electrons.

• ℏ and kB have their standard meanings.

This expression is standard for estimating the critical temperature in two-dimensional
systems where phase stiffness dominates, applicable both to conventional pair condensates
and to collective phase currents such as the one proposed here.

2.1. Relation Between σmin and neff

Within the Quarkbase model—consistent with previous graphene analyses—the minimal
conductivity of graphene contains a residual contribution given by

σmin ≃ e neff µQ, (16)

where µQ represents the effective mobility of the Quarkbase etheric channels (in m2·V−1·s−1).

Taking the experimentally typical quantum-limited conductivity of clean graphene,

σmin ≈ 4e2

h
, (17)

we can extract
neff ≃ σmin

e µQ

. (18)

This effective carrier density corresponds to the number of electrons dynamically cou-
pled to coherent Ψ channels and thus can be used to estimate the superfluid density,

ns ≈ neff. (19)
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2.2. Numerical Constants and Useful Values

Physical constants:

e = 1.602 × 10−19 C,

h = 6.626 × 10−34 J·s ⇒ ℏ = h

2π ≈ 1.055 × 10−34 J·s,

kB = 1.381 × 10−23 J·K−1.

(20)

Quick estimation of σmin:

σmin ≈ 4e2

h
≈ 4(1.602 × 10−19)2

6.626 × 10−34 ≈ 1.55 × 10−4 S. (21)

This value represents the sheet conductance of graphene in SI units for a two-dimensional
system, serving as the baseline for evaluating neff and, hence, the coherence-related Tc.

2.3. Reasonable Parameter Ranges for the Model

To evaluate Tc, the parameters µQ (mobility of the Quarkbase channels) and m∗ (effective
mass of the collective mode) must be specified within plausible ranges based on known
graphene physics and the collective nature of the Ψ channel.

Mobility of Quarkbase channels (µQ): Clean graphene typically exhibits electronic
mobilities in the range 104–106 cm2/Vs, corresponding to 1–100 m2/Vs. For the etheric
channel, we consider a conservative interval

µQ = 1 m2/Vs (lower bound)

up to
µQ = 10 m2/Vs (optimistic bound).

These values reflect the expected mobility of collective phase channels formed in a fric-
tionless medium (µ = 0, Fourth Axiom).

Effective mass of the collective mode (m∗): This parameter depends strongly on
geometry; “magic-angle” configurations produce flat bands (large m∗). Representative
cases are:

m∗ = 0.01me, 0.1me, 1me,

with me = 9.11 × 10−31 kg. These cover the full range from ultralight, high-velocity
channels to heavy, quasi-localized collective bands.
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Such parameter ranges are consistent with both experimental data on graphene and
the Quarkbase interpretation, where electron dynamics are mediated by collective etheric
channels rather than individual quasiparticles.

2.4. Calculation of neff

From the previously derived relation,

neff ≃ 1.55 × 10−4 S
(1.602 × 10−19 C)µQ

. (22)

For µQ = 1 m2/Vs:

neff ≈ 1.55 × 10−4

1.602 × 10−19 ≈ 9.7 × 1014 m−2.

For µQ = 10 m2/Vs:
neff ≈ 9.7 × 1013 m−2.

These correspond to surface densities of 1013–1015 m−2 (approximately 109–1011 cm−2),
values entirely reasonable for graphene and moiré superlattices.

2.5. Estimation of Tc Using the BKT Formula

For a two-dimensional system governed by phase stiffness, the Berezinskii–Kosterlitz–
Thouless (BKT) relation gives

Tc ≈ π

2kB

ℏ2neff

m∗ . (23)

We now evaluate representative parameter sets, rounding intermediate numerical results
for clarity.

Case A — High Mobility and Light Channel

µQ = 10 m2/Vs ⇒ neff ≈ 9.7 × 1013 m−2,

m∗ = 0.1me ≈ 9.11 × 10−32 kg.

Numerator:

ℏ2neff = (1.055 × 10−34)2 × 9.7 × 1013 ≃ 1.08 × 10−54 J2s2m−2.

Denominator:

m∗kB = 9.11 × 10−32 × 1.381 × 10−23 ≃ 1.26 × 10−54 J2K−1.
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Quotient:
ℏ2neff

m∗kB

≈ 0.86 K.

Multiplying by π/2:
Tc ≈ 1.35 K.

Case B — Intermediate Parameters

µQ = 1 m2/Vs ⇒ neff ≈ 9.7 × 1014 m−2,

m∗ = 0.1me.

Since neff is ten times larger than in Case A, Tc scales linearly:

Tc ≈ 13.5 K.

Case C — Heavier Effective Mass (Flattened Bands)

µQ = 1 m2/Vs, neff ≈ 9.7 × 1014 m−2,

m∗ = me.

The mass is ten times larger than in Case B, reducing Tc by the same factor:

Tc ≈ 1.35 K.

These results indicate that, for plausible parameter ranges, the Quarkbase supercon-
ductivity mechanism predicts Tc values between fractions of a kelvin and a few tens of
kelvin, matching experimental observations in graphene and twisted-bilayer systems.

2.6. Interpretation and Comparison with Experiments

The computed Tc values range from fractions of a kelvin to several tens of kelvin, depend-
ing on the chosen parameters.

For m∗ ≈ 0.1me and neff within the plausible range derived from the Quarkbase model,
the predicted Tc lies between 1 K and 10 K, in close agreement with experimental data
for graphene and twisted bilayer graphene, where typical transition temperatures of 0.1–
4 K have been reported. Some topologically engineered or high-mobility samples exhibit
higher onsets, also consistent with the upper range of the model.

Therefore, with realistic parameters, the Quarkbase mechanism reproduces the correct
experimental scale of superconducting transitions without invoking Cooper pairs. The
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observed superconductivity emerges naturally as a macroscopic manifestation of phase-
coherent flow in the frictionless etheric field Ψ. This confirms the physical viability of the
Quarkbase scenario and its predictive consistency with observed graphene phenomena.

2.7. Sensitivities and Refinement of the Prediction

Tc increases linearly with neff and decreases with m∗. A denser population of coherent
channels or a lighter collective effective mass enhances the transition temperature directly
through the BKT relation.

Increasing the channel mobility µQ tends to reduce neff if σmin is fixed, since neff ∝
1/µQ. However, in realistic graphene geometries both quantities can vary: strain or lattice
curvature can increase neff while maintaining high µQ, thereby raising Tc.

Flattened bands (larger m∗) naturally lower Tc unless compensated by a stronger
phase stiffness K or a more-than-proportional increase in neff. In the Quarkbase picture,
K reflects the global rigidity of the etheric pressure field,

K ∝ d2F

d(∇θ)2 ,

which depends on the conservation law
∫
ρp d

3x+Nvq = ρ(0)
p VU .

Hence, geometric compression or enhanced coupling between quarkbases directly increases
K, providing a physical route to higher Tc.

Overall, the predicted trends match experimental tunability in graphene systems: Tc

rises with improved order, carrier coherence, and lattice-induced coupling to the underly-
ing etheric plasma.

3. Demonstrative Physical–Theoretical Synthesis and
Predictions

3.1. Common Origin: Coherence of the Ψ Field in a Hexagonal
Lattice

In Quarkbase Cosmology (CQB), physical space is a continuous pressure medium—the
etheric plasma—described by a scalar pressure field Ψ(x, t) satisfying a relativistic wave
equation with nonlinear couplings and a finite screening length λ:

1
c2 ∂

2
t Ψ − ∇2Ψ + λ−2Ψ = f(ρ, j). (24)
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Graphene, with its perfect hexagonal lattice, acts as a two-dimensional resonant cavity
for this field. The carbon atoms function as anchoring nodes of Ψ, while the interatomic
spaces form pressure channels where Ψ can oscillate freely. When these oscillations reach
phase coherence, a collective state

Ψ = Ψ0e
iθ (25)

emerges and extends across the entire graphene sheet. This coherent field represents a
macroscopic manifestation of the etheric pressure equilibrium, sustained by the spheri-
cal geometry of quarkbases (Sixth Axiom) and the absence of viscous damping (Fourth
Axiom, µ = 0).

3.2. Electric Current Without Cooper Pairs

Conduction electrons in graphene are not free particles: they couple to the pressure
gradients of Ψ, experiencing an effective potential

E = −∇Ψ − ∂tA. (26)

From this coupling arises a hybrid current:

jQ = κ|Ψ|2(∇θ − Aeff), (27)

identical in form to the superconducting current but without Cooper pairs.
The nonlinearity term (αΨ4) stabilizes the phase θ, preventing dissipation. As a

result, electrons effectively slide upon the coherent phase of the etheric plasma, forming
a collective frictionless transport channel.

This explains the experimentally observed zero-resistance states in twisted or doped
graphene configurations (“magic-angle” systems), with critical temperatures Tc on the
order of 1–10 K—values already derived in Section 2 from the phase stiffness K and
effective carrier density neff.

3.3. Exceptional Thermal Conductivity

In conventional physics, graphene’s extraordinary thermal conductivity (> 5000 W/m·K)
is attributed solely to phonons. However, phonon-based simulations cannot reach such
values without introducing artificial assumptions. The Quarkbase Cosmology (CQB)
framework provides a direct physical explanation.

(a) Energy Transport Through the Ψ Field. The pressure field Ψ transports not
only electric momentum but also etheric pressure energy. The local energy balance equa-
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tion includes an associated flux:
SΨ = ∂tΨ ∇Ψ

µΨ
, (28)

analogous to the electromagnetic Poynting vector, yet independent of material carriers.
When the hexagonal lattice enters a coherent state, this flux is channeled across the entire
sheet, allowing thermal energy to redistribute at the propagation speed of the longitudinal
pressure mode cΨ, typically on the order of 106 m/s—comparable to the Fermi velocity.
Thus, graphene can transport heat at quantum-scale efficiency without local temperature
gradients, consistent with the frictionless condition of the ether (µ = 0, Fourth Axiom).

(b) Effective Expression for the Thermal Conductivity. The contribution of the
Ψ field to the thermal flux can be estimated as:

κΨ ≃ CΨ cΨ ℓΨ, (29)

where

• CΨ is the effective heat capacity associated with the Ψ mode,

• cΨ is its propagation velocity,

• ℓΨ is the coherence length of the pressure field.

Taking representative values,

CΨ ∼ 103 J/kg·K, cΨ ∼ 106 m/s, ℓΨ ∼ 10−6 m,

yields
κΨ ∼ 103 × 106 × 10−6 ≈ 103 W/m·K.

This contribution adds in parallel to the phononic component, easily reaching total con-
ductivities above 5×103 W/m·K, as experimentally observed. The CQB model thus pro-
vides a unified mechanism for both electrical and thermal hyperconductivity in graphene
through the same coherent Ψ dynamics.

3.4. Connection Between Superconductivity and Thermal Con-
ductivity

Both phenomena are two manifestations of the same coherence of the Ψ field:
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Property Dominant Variable Observable Effect

Superconductivity Phase of the field (stable
∇θ)

Dissipationless electric cur-
rent

Thermal hyperconductivity Amplitude of the field (os-
cillating |Ψ|)

Lossless heat transport

When both the phase θ and the amplitude |Ψ| become simultaneously stabilized, the
system can transport both charge and energy without loss. This unified view explains
why, in experiments, regions of graphene exhibiting the highest electronic mobility also
show maximum thermal conductivity.

In the CQB framework, these are not separate effects but two complementary aspects
of the same etheric coherence—one governed by phase rigidity and the other by amplitude
stability of the pressure field Ψ.

3.5. Verifiable Predictions

Direct correlation between κ and Tc: Since both depend on the degree of phase
coherence of the Ψ field, a rise in thermal conductivity should be observed just before the
superconducting transition, preceding the drop in electrical resistance.

Dependence on vacuum or external pressure: Reducing environmental coupling—
for example, under ultra-high vacuum or low external pressure—enhances the freedom of
the Ψ field. Consequently, both κ and Tc should increase simultaneously, reflecting reduced
damping of the etheric oscillations.

Resonant excitation: An acoustic wave or low-frequency electromagnetic field tuned
near the longitudinal mode frequency ωΨ should simultaneously enhance both electrical
and thermal conductivities. Detecting such dual enhancement would constitute a clear
signature of the Quarkbase mechanism.

4. Conclusion

Within the framework of Quarkbase Cosmology (CQB), graphene is not merely an elec-
tronic material but a macroscopic window into the dynamics of the etheric plasma. The
same phase coherence of the Ψ field that enables resistance-free electric current (super-
conductivity without Cooper pairs) also permits nearly lossless thermal transport.

Thus, graphene’s exceptional electrical and thermal properties emerge as two comple-
mentary expressions of a single underlying field physics—the coherent organization of the
frictionless etheric pressure field permeating all matter.
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