宇宙の作動原理
1.1 公理的基礎
1.1.1 有限宇宙: 宇宙は固定体積の閉じた容器であり、すべての力学的作用は物質と真空の再分布を伴い、無限成長はしない。
1.1.2 真空–プラズマ(隠れたエーテル): 真空は実際には不可視のエーテル状プラズマであり、圧力とエネルギーの伝達媒体である。内部相互作用が自己補償するため、検出されない。
1.1.3 クォークベース: 唯一の基本粒子で、圧縮されており内部空隙を持たない。他のすべての粒子はクォークベースの配置や集合体で構成される。
1.1.4 圧力による相互作用: 各クォークベースはプラズマ真空を変位させ、その周囲に放射状の圧力線を生成する。これが基本的な力の起源である。
1.2 理論的展開
1.2.1 力の起源:
クォークベース宇宙論(Cosmología del Quarkbase)によれば、いわゆる「真空」とは厳密な意味での空の空間や空洞ではなく、むしろプラズマ圧の連続的媒質である。すなわち、プラズマ的性質を有する物質であり、実スカラー場 Ψ(x, t) によって特徴づけられる。この場は、エーテル・プラズマの局所的圧力密度を記述する。
理想気体や理想流体とは異なり、この媒質は異方的弾性および自己組織化能力を有しており、コヒーレントな圧力線およびフィラメント構造を形成することができる。これらの構造は散逸せず、一様に分布しない。圧力線は場 Ψ の伝達経路として機能し、曲がり、絡み合い、変形エネルギーを蓄えることが可能である。
各クォークベース(quarkbase)は、エーテル・プラズマの変位に対応するコンパクトな領域として解釈される。その周囲には、圧力線が相互に絡み合い、ねじれ、特有の周波数で振動する系が形成される。エーテル・プラズマ全体の体積は保存されるため、クォークベースによって生じた局所的な変形は、圧力勾配によって補償され、その結果、位相・速度・共鳴状態に応じて引力または斥力が生じる。
これらの結合の安定構成は基本クォークを生成し、複数のクォークベース間の集団共鳴によって陽子、中性子およびその他の粒子が生じる。大規模なスケールにおける圧力線の幾何学的変動は、同一の場 Ψ から電磁力および核力を出現的効果として生成する。
– 重力: 遠隔引力ではなく、プラズマの再分布により物体がクォークベースの濃度の高い領域へ押される現象。
– 電磁気力: クォークベースの振動配置がプラズマを圧力波(光子)として変形させる。
– 核力: 圧力線が相互浸透・遮断されることで、強力(接着)や弱力(平衡応力)が生じる。
1.2.2 物質とエネルギー: 物質はクォークベースの構造化された状態であり、エネルギーはプラズマ中の圧力波である。E = mc² の関係は、クォークベース構造体が圧力波に分割されうること、逆も同様であることから導かれる。
1.2.3 宇宙論: 宇宙は膨張していない。我々が観測する膨張現象は、プラズマ密度の変化による光の経路の変動である。境界は圧縮領域であり、経路が閉じる。
最小定式化
本理論は、以下の4つの主要方程式に要約される:
基本解:湯川型(Yukawa型)
プラズマ・エーテル中の孤立クォークベースの圧力ポテンシャル解は湯川型で表される:
これらの式は、クォークベース間の相互作用が重力や他の力の形状を再現する様子を示しており、遮蔽長 \(\lambda\) による補正も考慮されている。
基礎
宇宙は有限であり、全体体積は一定に保たれている。エーテル状プラズマは密度および圧縮率を有し、クォークベースとこのプラズマとの相互作用によって圧力ポテンシャル Ψ が生成される。このポテンシャルが、重力および他の諸力の起源として出現的に作用する。
主要概念
- 全体体積の保存:クォークベースの数および体積とプラズマの密度は、全体的な拘束条件によって関連づけられている。
- 圧力場 Ψ:遮蔽長(λ)を持つクライン=ゴルドン型の方程式を満たす相対論的スカラー場。
- 出現的な力:クォークベース間の有効力は Ψ の勾配に比例し、適切な領域では大距離スケールにおいてニュートン力学の法則を再現する。
主要論文
クォークベース宇宙論における相対論的不変性と実験的制約
ローレンツ対称性がクォークベースの基礎場において局所的かつ有効に出現することを示し、モデルが現行のStandard-Model Extension(SME)の限界内で、最も精密な相対論的実験結果と完全に整合することを証明する。
クォークベース理論における相対論的不変性の再確認:詳細な数学的解析
本研究は、クォークベース宇宙論(Quarkbase Cosmology)の理論的枠組みに対する 再検討および数学的定式化を行ったものであり、 その目的は、理論が相対論的不変性と整合的であるかを 厳密に評価することにある。
Article Synopsis
Genesis Quarkbase A New Genesis for Physics A Manifesto for the Twenty-First Century
This work explains the origin of the fundamental forces — gravitational, electromagnetic, strong, and weak — as manifestations of a single governing principle: the global conservation of etheric volume. It reproduces atomic constants such as the Rydberg value and hydrogen binding energy, and introduces an alternative method of fission based on resonance of the etheric pressure field, equivalent in energy to conventional nuclear fission but founded on a different physical mechanism. It also predicts the next element in the periodic table (Z ≈ 155), derived from the quantized sequence of quarkbase closures.
Complex Formalism in Quarkbase Cosmology: Unified Description of Gravitational, Electromagnetic, and Quantum Interactions
This research extends the QuarkBase Cosmology into the complex domain, demonstrating that the mathematical representation through complex numbers does not alter the physical foundations of the theory but rather unifies, within a single analytical structure, the gravitational, electromagnetic, and quantum phenomena. The complex formalism allows one to express in a single function, \\( \Psi(x, t) = A e^{i(\omega t - \mathbf{k}\cdot\mathbf{x})} \\), the longitudinal (pressure) and transverse (vorticity) components of the etheric plasma, simplifying differential derivatives and revealing the intrinsic nature of the field oscillations. It is shown that Maxwell’s equations can be reformulated as a complex wave equation of the etheric plasma, in which the real part represents electric pressure and the imaginary part magnetic vorticity, while the formalism strictly preserves Lorentz invariance. Finally, the framework is applied to the nucleus–electron resonance in hydrogen, deriving its coupling frequency directly from the phase conditions of the complex field and demonstrating the coherence of the QuarkBase model from the subatomic to the relativistic scale.
Empirical evidence for the existence of an etheric vacuum exhibiting plasmatic properties
This study presents an empirical and theoretical framework supporting the ex- istence of an etheric vacuum with plasmatic characteristics, as predicted by the QuarkBase Cosmology. Using the historical parameters of Tonomura’s 1989 single-electron double-slit experiment, we reproduce the observed interference patterns under the assumption that the vacuum behaves as a continuous pres- sure field (Ψ) rather than as an empty background. The model introduces two measurable parameters—the screening length (λ) and the decoherence rate (Γφ)—which describe, respectively, the attenuation of the pressure wave through the etheric medium and the loss of coherence induced by detector coupling. Numerical simulations yield λ ≈ 5 m and Γφ ≈ 80 s−1, providing an accu- rate quantitative match to Tonomura’s recorded interference build-up while offer- ing a causal, physically interpretable mechanism. The results demonstrate that the QuarkBase formulation can reproduce the same experimental data as stan- dard quantum mechanics without invoking non-causal collapse postulates. Instead, the interference pattern arises from the redistribution of etheric pressure within a frictionless but compressible medium, suggesting that space itself possesses measurable mechanical structure.
Quantum Entanglement in Quarkbase Cosmology
Proposes that quantum entanglement is a consequence of shared pressure channels in the plasma ether, explaining instantaneous correlations without superluminal transmission.
The Next Electromagnetic Revolution: Maxwell’s Equations in the Framework of Quarkbase Cosmology
The Quarkbase theory reformulates the foundations of electromagnetic interaction by interpreting classical fields not as abstract entities in empty space, but as pressure distributions within a continuous, frictionless plasma that permeates the universe. In this framework, Maxwell’s equations acquire a physical substrate: they describe the reorganization of pressure lines in this hidden medium rather than mere mathematical relations among charges and currents. This reinterpretation preserves the predictive power of classical electromagnetism while providing a consistent field-based foundation for potential extensions and experimental tests.
Simultaneous Enhancement of Electrical and Thermal Conductivity in Graphene through Excitation of the Etheric Longitudinal Mode
Within the framework of the Quarkbase Cosmology, electromagnetic and transport phenomena arise from longitudinal pressure waves in an etheric medium described by the scalar field Ψ(x, t). When an excitation in the terahertz or mid-infrared range (10–60 THz) couples resonantly to the longitudinal mode of this field, the coherence of both charge and heat carriers in graphene increases simultaneously. The predicted result is a reversible and correlated enhancement of the electrical conductivity σ and the thermal conductivity κ, a distinctive signature of the etheric longitudinal mode acting as a unifying coupling channel.
Curvature-Tunable Absorbance in Graphene: A Quarkbase-Cosmology Prediction
Within the framework of Quarkbase Cosmology, electromagnetic propagation arises from longitu- dinal pressure waves of a frictionless etheric plasma (Ψ-field). This theory predicts that the universal optical absorbance of monolayer graphene (A ≈ πα) should vary linearly with biaxial strain or mean curvature, due to changes in the local density of etheric pressure channels that guide the propagation of light. The expected dependence is ∆A/A ≃ 10−3–10−2 per % strain. Verification of this small but measurable effect would provide a direct falsifiable test of the Quark- base description of electromagnetic phenomena as pressure dynamics in an incompressible etheric medium.
The Quarkbase Cosmology Explanation of Superconductivity and Thermal Hyperconductivity in Graphene
This work presents a unified mechanism for superconductivity and thermal hyperconductivity in graphene within the framework of Quarkbase Cosmology (QBC), which models space as a frictionless etheric plasma governed by a scalar pressure field Ψ(x,t). In this view, graphene acts as a two-dimensional resonant cavity for Ψ, where phase coherence produces nondissipative electric currents without requiring Cooper pairing. An effective Ginzburg–Landau formulation and a Berezinskii–Kosterlitz–Thouless analysis yield critical temperatures of 1–10 K, consistent with experimental data. The same Ψ-field coherence explains graphene’s extraordinary thermal conductivity (>5000 W/m·K) as pressure-energy transport within the etheric medium. Overall, the work unifies graphene’s electrical and thermal behavior as two observable manifestations of phase and amplitude coherence in the underlying Ψ field.
Etheric Vacuum Pressure Sensor (SEP-V1): an interferometric system for detecting and converting energy through pressure gradients of the Ψ field
The SEP-V1 proposes an experimental device capable of detecting, amplifying, or eventually converting variations in the pressure of the Ψ field into measurable changes in optical phase or intensity. This system enables the experimental validation of dynamic anisotropies in vacuum density and allows the exploration of their potential energy conversion.
Coherent Pressure Quarkic Battery (Ψ-Cell)
This study reports the design and experimental validation of a Coherent Pressure Quarkic Battery (Ψ-Cell), a solid-state device that converts pressure fields of the etheric plasma into electric potential within multilayer graphene–dielectric structures. Exploiting the coherence of the scalar field Ψ, the system produces a voltage proportional to the pressure gradient without chemical or mechanical reactions. The prototype, comprising 500 active layers and a pressure-dependent RLC model with PLL–MPPT control, achieved 1–5 W output power, over 90 % efficiency, and excellent thermal stability (ΔT < 5 °C). These results demonstrate a new class of solid-state energy storage based on coherent vacuum pressure for ultra-low-dissipation electronics and autonomous quarkic energy systems.
The Geometry of Galaxies
Explores how the structure of galaxies is interpreted in terms of plasma ether pressure and global volume conservation. Suggests that spiral distribution and flattening result from Ψ field stresses.
Redshift in Quarkbase Theory
Reinterprets redshift as an effect of variations in plasma ether density and pressure wave propagation, rather than metric expansion of space.
Superclusters in Quarkbase Theory
Presents a model for supercluster formation through redistributions of ether pressure, without invoking dark matter as the primary explanation.
Hawking Radiation in Quarkbase Cosmology
Offers an alternative interpretation of Hawking radiation, linking it to pressure redistributions in the plasma ether around event horizons.
Microwave Background in Quarkbase Cosmology
Explains the cosmic microwave background as an equilibrium state of the plasma ether, rather than a thermal remnant of the Big Bang. Predicts anisotropies related to pressure fluctuations.
Quasars in Quarkbase Cosmology
Interprets quasars as high-energy resonators where ether pressure lines produce intense and persistent emissions, without requiring extreme accretion.
CMB Expansion in Quarkbase Extended Theory
Proposes that apparent signals of cosmic expansion in the CMB are due to density variations in the plasma ether, reinterpreting observations without an inflationary Big Bang.
Explaining Quark Flavors and Masses through Quarkbase Cosmology
It explains the structure of matter by modeling quarks as resonant systems composed of fundamental vibrating units, and provides a framework for understanding mass, flavor, and the dynamic nature of the quantum vacuum.
Biomedical Applications
Biomedical Advances with Quarkbase Theory
Explores potential biomedical applications of the theory, including interpretations of cellular resonance, molecular dynamics, and proposals for diagnosis or therapy based on the plasma ether.
Biomedical Applications: Cancer and Quarkbase Cosmology
Analyzes the dynamics of cancer cells from the plasma ether perspective, suggesting alternative models of proliferation and potential therapeutic research pathways.
予測と応用
理論的枠組みに基づく観測可能な予測および潜在的な技術開発の概要。
- エーテル圧力波: 精密検出器や天体物理現象(パルサー、FRB)における潜在的信号。
- 重力補正: スクリーン長さ λ における 1/r² からの偏差。
- 技術応用: 先進的推進技術、プラズモニックコンピューティング、プラズマ結合に基づく間接センサー。
連絡先および共同研究
この研究を支援する
この独立した宇宙論プロジェクトを維持するために、Bizum または PayPal を通じてご支援いただけます。
PayPalで寄付